博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
BZOJ3456 城市规划 【分治NTT】
阅读量:4365 次
发布时间:2019-06-07

本文共 3054 字,大约阅读时间需要 10 分钟。

题目链接

题解

据说这题是多项式求逆

我太弱不会QAQ,只能\(O(nlog^2n)\)分治\(NTT\)

\(f[i]\)表示\(i\)个节点的简单无向连通图的数量

考虑转移,直接求不好求,我们知道\(n\)个点无向图的数量是\(2^{
{n \choose 2}}\)
的,考虑用总数减去不连通的
既然图不连通,那么和\(1\)号点联通的点数一定小于\(n\),我们枚举和\(1\)号点所在联通块大小,就可以得到式子:
\[f[n] = 2^{
{n \choose 2}} - \sum\limits_{i = 1}^{n - 1}{n - 1 \choose i - 1}2^{
{n - i \choose 2}}f[i]\]
展开组合数变形得:
\[f[n] = 2^{
{n \choose 2}} - (n - 1)!\sum\limits_{i = 1}^{n - 1}\frac{f[i] * i}{i!} * \frac{2^{n - i \choose 2}}{(n - i)!}\]
分治NTT即可

#include
#include
#include
#include
#include
#define REP(i,n) for (int i = 1; i <= (n); i++)#define cls(s) memset(s,0,sizeof(s))#define LL long long int#define res registerusing namespace std;const int maxn = 500000,maxm = 100005,INF = 1000000000,P = 1004535809;const int G = 3;int N,f[maxn],fac[maxn],fv[maxn],inv[maxn],C2[maxn];int A[maxn],B[maxn],R[maxn],w[2][maxn],L,n,m;inline int qpow(int a,LL b){ int ans = 1; for (; b; b >>= 1,a = 1ll * a * a % P) if (b & 1) ans = 1ll * ans * a % P; return ans;}inline void NTT(int* a,int f){ for (res int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]); for (res int i = 1; i < n; i <<= 1){ int gn = w[f][i]; for (res int j = 0; j < n; j += (i << 1)){ int g = 1,x,y; for (res int k = 0; k < i; k++,g = 1ll * g * gn % P){ x = a[j + k]; y = 1ll * g * a[j + k + i] % P; a[j + k] = (x + y) % P; a[j + k + i] = (x - y + P) % P; } } } if (f == 1) return; int nv = qpow(n,P - 2); for (res int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;}void solve(int l,int r){ if (l == r){ f[l] = ((C2[l] - 1ll * fac[l - 1] * f[l] % P) % P + P) % P; return; } int mid = l + r >> 1,t; solve(l,mid); m = (mid - l) + (r - l); L = 0; for (n = 1; n <= m; n <<= 1) L++; for (int i = 0; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1)); for (int i = 0; i < n; i++) A[i] = B[i] = 0; t = mid - l + 1; for (int i = 0; i < t; i++) A[i] = 1ll * f[l + i] * fv[l + i - 1] % P; t = r - l; B[0] = 0; for (int i = 1; i <= t; i++) B[i] = 1ll * C2[i] * fv[i] % P; NTT(A,1); NTT(B,1); for (int i = 0; i < n; i++) A[i] = 1ll * A[i] * B[i] % P; NTT(A,0); for (int i = mid + 1; i <= r; i++){ f[i] = (f[i] + A[i - l]) % P; } solve(mid + 1,r);}int main(){ scanf("%d",&N); fac[0] = fac[1] = inv[0] = inv[1] = fv[0] = fv[1] = 1; for (res int i = 2; i <= N; i++){ fac[i] = 1ll * fac[i - 1] * i % P; inv[i] = 1ll * (P - P / i) * inv[P % i] % P; fv[i] = 1ll * fv[i - 1] * inv[i] % P; } for (res int i = 1; i <= N; i++){ C2[i] = qpow(2,1ll * i * (i - 1) / 2); } for (res int i = 1; i < maxn; i <<= 1){ w[1][i] = qpow(G,(P - 1) / (i << 1)); w[0][i] = qpow(G,(-(P - 1) / (i << 1) % (P - 1) + (P - 1)) % (P - 1)); } solve(1,N); printf("%d\n",f[N]); return 0;}

转载于:https://www.cnblogs.com/Mychael/p/9029410.html

你可能感兴趣的文章
关于 input[type="button"] , button
查看>>
Android ViewDragHelper全然解析 自己定义ViewGroup神器
查看>>
c++ 基础 const char* 转 char*
查看>>
JS-- 小细节--你悟到了什么?
查看>>
收款 借贷
查看>>
Gson关于抽象类的序列化与反序列化
查看>>
Java面向对象之类和对象
查看>>
Oracle数据库提权(dba权限执行系统命令)
查看>>
Hydra爆破神器使用
查看>>
java.util.zip.ZipException: duplicate entry(重复依赖多版本的类库)
查看>>
Run MVC in older version of IIS
查看>>
Ajax 监听
查看>>
隐藏"站长统计"图标
查看>>
Oracle select 中case 的使用以及使用decode替换case
查看>>
创建一个dynamics 365 CRM online plugin (十二) - Asynchronous Plugins
查看>>
Eclipse 常用快捷键 (动画讲解)
查看>>
233 Matrix(矩阵快速幂+思维)
查看>>
Leetcode-Unique Binary Search Trees II
查看>>
Centos7系统下安装Docker
查看>>
PostgreSQL 序列(SEQUENCE)
查看>>